1 Find $\int \sqrt[3]{2 x-1} \mathrm{~d} x$.

2 Fig. 8 shows the line $y=1$ and the curve $y=\mathrm{f}(x)$, where $\mathrm{f}(x)=\frac{(x-2)^{2}}{x}$. The curve touches the x-axis at $\mathrm{P}(2,0)$ and has another turning point at the point Q .

Fig. 8
(i) Show that $\mathrm{f}^{\prime}(x)=1-\frac{4}{x^{2}}$, and find $\mathrm{f}^{\prime \prime}(x)$.

Hence find the coordinates of Q and, using $\mathrm{f}^{\prime \prime}(x)$, verify that it is a maximum point.
(ii) Verify that the line $y=1$ meets the curve $y=\mathrm{f}(x)$ at the points with x-coordinates 1 and 4 . Hence find the exact area of the shaded region enclosed by the line and the curve.
The curve $y=\mathrm{f}(x)$ is now transformed by a translation with vector $\binom{-1}{-1}$. The resulting curve has equation
$y=\mathrm{g}(x)$.
(iii) Show that $\mathrm{g}(x)=\frac{x^{2}-3 x}{x+1}$.
(iv) Without further calculation, write down the value of $\int_{0}^{3} \mathrm{~g}(x) \mathrm{d} x$, justifying your answer.

3 Evaluate $\int_{0}^{\frac{1}{6} \pi}(1-\sin 3 x) \mathrm{d} x$, giving your answer in exact form.

4 Fig. 9 shows the curve $y=x \mathrm{e}^{-2 x}$ together with the straight line $y=m x$, where m is a constant, with $0<m<1$. The curve and the line meet at O and P . The dashed line is the tangent at P .

Fig. 9
(i) Show that the x-coordinate of P is $-\frac{1}{2} \ln m$.
(ii) Find, in terms of m, the gradient of the tangent to the curve at P .

You are given that OP and this tangent are equally inclined to the x-axis.
(iii) Show that $m=\mathrm{e}^{-2}$, and find the exact coordinates of P .
(iv) Find the exact area of the shaded region between the line OP and the curve.

5 Using a suitable substitution or otherwise, show that $\int_{0}^{\frac{1}{2} \pi} \frac{\sin 2 x}{3+\cos 2 x} \mathrm{~d} x=\frac{1}{2} \ln 2$.

